a8386a98

Таким образом, когда мы диверсифицируем


 

Ожидаемый доход = 200000 долл.

ст = квадратный корень из [(0,25)(0 - 200000 долл.)2 + (0,5)(200000 долл. - 200000 долл.) (0,25)(400000 долл. - 200000 долл.)2]

сг = 200000 долл/Л = 141421 долл.

 

Таким образом, когда мы диверсифицируем инвестиции между двумя препаратами с некоррелируемыми доходами, то ожидаемый (средний) доход остается равным 200000 долл., но стандартное отклонение уменьшается на величину, равную 1//2 от 200000 долл., и получается 141421 долл. Стандартное отклонение ставки доходности уменьшается с 200% до 141,1%.

Теперь давайте посмотрим, что случится с ожидаемым доходом и со стандартным отклонением, если количество препаратов, в которые вы вложили деньги, увеличится. Другими словами, при усилении диверсификации вашего портфеля инвестиций (исходя из предположения, что успех одного препарата никак не связан с успехом остальных) 7. Ожидаемый доход остается прежним, но стандартное отклонение уменьшается пропорционально квадратному корню из числа препаратов:

о пор = 200000 долл./ -jn

Распределение вероятности ставки доходности портфеля в случае инвестирования в один препарат представляет собой биномиальное распределение. По мере увеличения числа препаратов в портфеле инвестиций распределение все более приближается анормальному.

Контрольный вопрос 11.5

Среди какого числа препаратов с некоррелируемыми доходами следует распределить инвестиции, чтобы стандартное отклонение дохода портфеля составило 100 долл.?





Содержание раздела